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Efficient determination of the nonlinear Burnett coefficients
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In a previous paper [R. K. Standish and D. J. Evans, Phys. Rev. A 41, 4501 (1990)], simple
equilibrium expressions were obtained for the nonlinear Burnett coefficients. In this paper, we
devise a more efficient way of using these expressions and show some preliminary results from a

color-conductivity simulation.
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I. INTRODUCTION

Ever since the Green-Kubo formalism for calculating
the linear transport coeflicients was developed, there has
been interest in a corresponding theory for the nonlinear
Burnett coefficients. The discovery of long-time tails in
the velocity autocorrelation function by Alder and Wain-
wright [1] indicated that the hydrodynamic transport co-
efficients do not exist in two dimensions, but do exist in
three dimensions. By applying mode-coupling theories,
Ernst et al. [2] showed that the relation between stress
and strain rate should be P,, « |y|ln|y| for hard disks
and P, = —n'y+c|'y|% for hard spheres, which are nonan-
alytic constitutive relations. These results indicate that
the nonlinear Burnett coefficients do not exist at all, so
the interest has intensified for a numerical simulation to
test the mode-coupling theories.

In a recent paper by Evans and Lynden-Bell [3], equi-
librium fluctuation expressions for inverse Burnett coef-
ficients were derived for the color-conductivity problem.
The coefficients B; give a Taylor series representation of a
nonlinear transport coefficient L, in terms of the thermo-
dynamic force F. Thus if a thermodynamic flux J is writ-
ten in terms of the coefficient’s defining constitutive re-
lation as (J) = L(F)F, then the Burnett coefficients are
related by L(F) = Bo+ B F+ByF?+- ... In order to de-
rive closed form expressions for the Burnett coefficients,
it was found necessary to work in the Norton ensemble,
in which the flux J rather than the thermodynamic force
F was the independent variable. The constitutive rela-
tion in this case is (F) = £(J)J = Bo+ B1J +---. In the
thermodynamic limit, we may write £(J) = L~1(J), and
so the nonlinear Burnett coefficients can be computed by
inverting the series.

Evans and Lynden-Bell [3] applied constant current
dynamics to a canonical ensemble with the currents dis-
tributed about an average current Jy. This allowed the
J
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derivation of a transient time correlation function for the
nonequilibrium phase average (F'). It was then a sim-
ple matter to compute the derivatives of (F') with re-
spect to the average current Jy, as the constant current
propagator commutes with the derivative operator. How-
ever, this method appeared to be limited to color currents
for which an appropriate canonical distribution could be
found. In a previous paper [4] we show that this method
can be applied to the situation of an arbitrary thermody-
namic flux. In this paper we show that the transient time
correlation expression derived in the previous paper can
be expressed in terms of an average over an equilibrium
simulation, reducing the calculation required by two or-
ders of magnitude. Further, we shall report on results
recently obtained which show that such simulations are
just within the capability of computers available now.

In order to avoid confusion, it should be noted that the
term “color diffusion” is sometimes used in the sense of
the diffusion of color labels attached to otherwise color-
blind particles in the complete absence of applied exter-
nal fields [5]. In this approach if the color label attached
to a particle is ignored, the system remains at equilib-
rium. This is manifestly a linear process. In the model
we consider all the particles interact with an external
color sensitive external field and this allows the possibil-
ity of a nonlinear response. It might also be pointed out
the the color field we consider here is independent of both
position and time so that the linear Burnett coefficients
do not play a role.

II. EQUILIBRIUM SIMULATION

Recall that transient time correlation functions for
evaluating the first three derivatives of a phase space vari-
able B with respect to a nonequilibrium flux Jo = (J)
about the equilibrium point Jy = 0 are given in Ref. [4]:

—|~ﬂN‘/0 (B(s5)A(0))ds, (1)
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where X is a phase variable conjugate to J that serves
to keep the simulation at constant flux, and the phase
average is taken over a canonical ensemble f, =
exp(—BH)/ [ exp(—BH)dT. These same equations are
valid if the flux-controlling and thermostating mecha-
nisms used are Nosé-Hoover rather than the Gaussian
mechanism used in Ref. [4]:

i = 2+ C,
m

p: = F; + D;)\ — ap;,

. 3Nk

Q= QQB(T—TO),

. N

A= —[J-J(t=0)], (4)
Qx

2
where F; are the intermolecular forces, T = ), %,
and To = (T). It should be noted that the operation
of differentiation with respect to Jy commutes with the
propagator arising from Eq. (4), a fact that is used in
the derivation of expressions (1)—(3).

When the flux is fixed in this manner, the ensemble is
termed a Norton ensemble. When the thermodynamic
force is fixed, then it is termed a Thévenin ensemble
by analogy with electrical circuits [6]. We have recently
given a statistical mechanical proof of the macroscopic
equivalence of the Norton and Thévenin representations
of a nonequilibrium system [7]. As discussed in Ref. [4],
these equations are quite general. For specificity, con-
sider the color current model discussed in the previous
references. In this case, C; = 0 and D; = e;X, where e;
is the color charge of molecule ¢. Half of the molecules
have positive charge (e; = +1) and the other have nega-
tive charge (e; = —1). The feedback parameter A can be
identified with the amount of external force required to
fix the current at a particular level.

The two time correlation functions in Egs. (1)—(3) are
averaged over an ensemble of flux-controlled trajectories.
To calculate this, one would first need to generate the
distribution fp, using molecular dynamics simulation or
Monte Carlo methods. If generated by molecular dy-
namics, then a trajectory of an equilibrium system is

/ (B(s5)A0)(AJ? — (AJ?)))ds,

3)

sampled to form the ensemble of initial states. Obvi-
ously, the sampling time should be comparable with the
mixing or correlation time of the system. Once an initial
phase space configuration I'g was produced with proba-
bility fo(To), then its evolution under the flux-controlled
equations of motion needs to be followed. If we wish to
follow these trajectories for n; sample times, then we re-
quire nrn; sample times to average over nr trajectories.
By contrast, the Green-Kubo expressions for the linear
transport coefficients involve correlation functions whose
propagator is independent of the initial state of the tra-
jectory. We can therefore form the average as

(AWB(©) = - Alt+ 1) BU),

with 7 being the time step. This clearly requires only
nr-+n,; sample times, and so it is more efficient by a factor
of LRt provided that the time required to generate a
new ensemble member (7) can be neglected with respect
to the required time to follow the trajectories. We shall
see in this section that the ensemble averages in Egs. (1)—
(3) can be calculated from a single equilibrium trajectory,
with the consequent improvement in efficiency. Write the
flux-controlled propagator explicitly as e*£7t, where J is
enscripted to indicate that it is not a phase variable:

(A(0)B(ts)) = / fo(T)(Ae L7 B; 7)dT . (5)

This explicitly shows that an ensemble of propagators is
used in expressions (1)—(3). We will now show that this
ensemble may be replaced by an ensemble having a single
propagator statted to the mean flux Jo.

The Dyson equation [8] may be used to expand e
in terms of e*lJot:

il st

<AeiLJtB;J> — <AeiLJOtB;j>
t

+<A/ eiLJ(t_’)iALeiL’O’Bds;.,7>
0

+eee (6)



3480 R. K. STANDISH AND D. J. EVANS 48

For L7 being the flux-controlled Liouvillean with Nosé-
Hoover feedback mechanism, the difference in operators
is contained only in the equation of motion for A:

iAL = AN3y = ﬁ(j — Jo)0h.
Qx

Since J —J is not a phase variable, it commutes with L 7.
Defining B’ = fot e'L7(t=9)9, ¢il10° Bds, we may write the
series (6) as

(B(t7)A(0); T) = (B(ts,)A(0); J)
HB'AT = Jo); T) +---.
Substituting this into (5) reveals

(B(ts)A(0)) = (B(ts,)A(0)) + (B'AAT) +---. (7)

As B’ is intensive, the result given in the Appendix shows
that the higher terms will vanish in the thermodynamic
limit, provided that B(¢y) vanishes in mean for all 7,
or it never has zero mean for any J. This is clearly
true of A(sy) for both the color-conductivity model and
the planar couette flow model; it vanishes in mean for
symmetry reasons. In the thermodynamic limit, Eq. (7)
becomes

(B(tr)A(0)) = (B(ts,)A(0)). (8)

Thus the time correlation functions of (1)—(3) are ex-
pressed in terms of an average over a single trajectory,
provided that the flux-controlling propagator generates
fo. This is the case for the Nosé-Hoover feedback mech-
anism discussed, when Jy = 0.

III. NUMERICAL EVALUATION
OF BURNETT COEFFICIENTS

In order to establish the feasibility of calculations
based on Eq. (3), it was decided to perform a calculation
using the color-conductivity model described in Evans
and Lynden-Bell [3]. The intermolecular potential was
taken to be the Lennard-Jones potential, which has an
attractive component due to van der Waals interaction
and a repulsive hard core that goes as r—12:

v [(2)"- ()]

In what follows, every quantity will be given in reduced
units, in which € = ¢ = m = 1. This model has been well
studied and can be related physically to some noble gases
such as argon. The correlations between different succes-
sive states of the equilibrium simulation can be easily
seen by examining something such as the velocity auto-
correlation function (see Fig. 7.1 of [9] for examples).
The correlation time for this system is about 1.

The system consists of 32 (or 108) particles at a tem-
perature of 1.08 and density of 0.85. This state point
was chosen because considerable information was already
known about this system at that state point [6].

The equations of motion employed were the Nosé-

Hoover feedback mechanism for the Norton ensemble [Eq.
(4)] with J = 37, =% C; = 0, and D; = ¢;%, where ¢;
is the charge on the ¢th molecule. In accordance with
the previous discussion, the simulation is performed at
equilibrium [J(¢t = 0) = 0]. The feedback parameter Q,
was chosen to be of order unity and Q, to be 0.96. The
values of these parameters were chosen to give optimal
convergence of the linear response function. There is no
real reason for them to be optimal for nonlinear response
functions.

Initially, a 108 particle system was simulated on a Fu-
jitsu VP100 supercomputer. The code executed 1.2 x 10
time steps per hour, or about 75 Mflops. Even after
200 hours of CPU time, the statistics were still poor, al-
though a nonlinear response could be seen. Later on,
Sun SPARCstation computers became available, which
could be used as nodes of a Multiple Instruction, Mul-
tiple Data computer (MIMD), each running a copy of
the system. The phase averages could now be taken over
the ensemble of systems, as well as time. The network
of approximately 30 workstations had about the same
speed as the VP100 for a 108 particle system, and about
half the speed for the 32 particle system (6 million time
steps an hour versus 12 million on the VP100). However,
as the workstation network was not being used for any
other CPU intensive purpose, it represented an 8 to 16
times throughput over the VP100 supercomputer. The
work reported here represents accumulation of data for
1.2 x 10! time steps of a 32 particle system. Figure 1

shows i%—t—)—) for the system under study for Q = 2. As
mentioned before, the units employed are the reduced
units for the Lennard-Jones system, in which (for exam-
ple) time is measured in units of 7 = 04/m/e. Figure 2
shows the time derivative of this function. The long (neg-
ative) tail shown in this figure lies within two standard
deviations of zero, the error bar showing the size of the
noise. Clearly, another order of magnitude of computer
power is required to resolve the issue of whether this is a
long time tail or not.

In terms of efficiency relative to the method proposed
in [4], the sample time should be about 1 (correspond-
ing to the correlation time), so n; =~ 2. Therefore the
present method is efficient by a factor of npﬁzz/—nr, ie.,
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FIG. 1. The third-order response 8°(\(t))/8J3. Only the
last term on the right-hand side of (3) is nonzero for this case.
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FIG. 2. The time derivative of the response shown in Fig.
1.

about twice as efficient in the long term (as np — o00).
In fact the efficiency improvement is probably a bit bet-
ter than this, because the present method allows sam-
pling at smaller than the correlation time at virtually no
extra cost, and even partially decorrelated states do con-
tribute information to the final average. The calculations
reported in this paper used a sample time of 1 x 1072,

IV. CONCLUSION

Phase space averages over equilibrium simulations of-
fer a way of calculating nonlinear Burnett coefficients in

({19 = e {13 %)

.
ZFZ

=

n 1 N n
Aij> + Ne Z Z 2
i=1 \i=1

i=1 j(#i) k=2

much the same way as the Green-Kubo formula relates
linear transport coefficients to equilibrium averages. This
paper expands on earlier work in reporting an improved
algorithm over previous papers [3,4] and reporting some
preliminary results of simulations that show these cal-
culations to be within the range of computer facilities
available now.

It has been suggested [10] that the coefficients may di-
verge in the thermodynamic limit. To test this hypoth-
esis requires running the simulation at different system
sizes. At present, a 108 particle simulation is being run.

APPENDIX: SYSTEM SIZE DEPENDENCE
OF A PRODUCT OF INTENSIVE PHASE
VARIABLES

In this appendix, we show that the phase average of a
product of zero mean intensive phase variables []._; A;
is of order N1~™, with NV being the number of particles
in the system.

Let us begin by noting that the phase variable A; can
be written as an average over individual particles:

1 N
A=+ ZAU.
j=1

Then we find that

(A1)

(e (Te) (L 20))

In a system where the order is short range (for example, a fluid far from its critical point), we would expect that corre-
lations of the form Ef\_’__l 3 (9) (Ay; Agj - - +) only pick up contributions from its near neighbors and are consequently
intensive. However, Zjvzl ([T:, Aij) is clearly extensive, so we find that

<ﬁ A,-> = O(N'™™).

If the any of the phase variables have nonzero mean, then we may use the binomial theorem to express the result
in terms of a product of means. For example, if all variables have nonzero mean, we may write

<£[A> -%(5) <HAA> 1

j=0

i=j+1

= H(A,-) +O(NY).
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